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Abstract. Floquet theory is used to describe the response of a molecule to applied radiation electric field.
The method of ab initio calculation of frequency dependent (hyper)polarizabilities based on combination
of perturbation theory with the finite field method has been developed. Electron correlation is taken into
account by means of the CIPSI algorithm. The total wave function expansion involves spectral, pseudo-
spectral states and polynomial terms. The developed approach is applied to the calculation of the second
hyperpolarizability of the lithium hydride molecule subjected to the superposition of harmonic and static
electric fields. The method can be used to calculate the higher order nonlinear properties of molecules.

PACS. 31.15.Ar Ab initio calculations – 31.25.Nj Electron correlation calculations for diatomic molecules
– 33.15.Kr Electric and magnetic moments (and derivatives), polarizability, and magnetic susceptibility –
42.65.An Optical susceptibility, hyperpolarizability

1 Introduction

It has generally been accepted that second- and third-
order processes are related to the most important phe-
nomena in nonlinear optics. As these processes are
governed by atomic and molecular dynamic hyperpolar-
izabilities the latter are of considerable interest.

Many ab initio calculations of these frequency-
dependent properties were carried out at different levels
of the theory including electron correlation effects during
the last decade (see [1] and references herein). Jonsson
et al. [2] reported the application of the multiconfiguration
cubic response theory to the SHG hyperpolarizabilities of
LiH and CO. Hättig et al. [3–5] presented the coupled clus-
ter second and cubic response theories and reported the
results of the first and second dynamic hyperpolarizabil-
ities calculations. The coupled cluster response theory in
the equation of motion (EOC-CC) formulation has been
developed in Bartlett group by Rozyczko et al. [6,7]. The
time-dependent generalization of the density functional
theory (TDDFT), which can be considered as DFT ex-
tension of RPA, has been formulated by Colwell et al. [8].
The application of time-dependent DFT to the nonlin-
ear properties of organic molecules has been given by van
Gisbergen et al. [9,10].
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Recently Kobayashi et al. [11,12] reported the imple-
mentation of the first and second frequency-dependent
hyperpolarizabilities of the number of molecules, using
the quasienergy derivative (QED) method at the second-
order Møller-Plesset perturbation theory (MP2) level. The
authors (Sasagane et al.) developed this approach ear-
lier [13,14] and called it QED-MP2 response theory.

It should be noted that the term quasienergy was
first introduced to indicate the time-independent energy-
like quantity E , appearing in the overall phase factor of
the Floquet states wave function [15–18]. It has been
shown [19], that in the case of time-periodic perturbation
this quantity can be obtained as the time average over one
period of the real time-periodic integrand W (t), which de-
termines the phase of the whole wave function. Rice and
Handy [20,21] called W (t) the time-dependent energy or
more strictly pseudo-energy. However it becomes common
in quantum chemistry literature that W (t) is referred to
as quasienergy while E is termed “time-independent” or
“time-average” quasienergy.

The important feature of the QED method [11] and CC
response theory of Hättig et al. [3–5], is that they are quite
equivalent to the method of using the derivatives of the
quasienergy E . However the Floquet states approach has
the advantages of higher universality. It can be used with
slight modifications in the case when the field frequencies
are close to the transition energy of the system. It also
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holds for the polychromatic fields [22] unrestricted by the
frequencies commensurable condition specific to the QED
and closely related approaches.

The distinctive property of the Floquet theory is that
Floquet states describe a quantum system subjected to
the finite electromagnetic field in the same manner as the
stationary states do in the case of the time-independent
Hamiltonian. As has been indicated by Dmitriev and
Roos [23], this allows the finite field method to be used
in calculations of molecular nonlinear dynamic properties
even if all the frequencies of the field are non-zero. This
statement was demonstrated in calculations of the second
dynamic hyperpolarizabilities of hydrogen molecule over
a wide wavelength range up to the first resonance.

It should be emphasized that feasibility of the finite
field method as well as the finite-order perturbation the-
ory, substantially depends on the basis set properties.
Both of these approximations are widely employed us-
ing a finite basis set. However the radii of convergence of
Floquet state quasienergy or dipole moment power-series
expansions in the field strength tends towards zero as the
basis size increases [25]. This means, that the basis set
does not have to be too large in practice. However, to
describe any actual many-electron system, which always
has an infinite number of states the basis set must be
sufficiently large (excluding the resonance case), or alter-
natively must involve the terms of special form.

In this paper we consider an example of the use
of Floquet theory in combination with the “time-
independent” perturbation theory for Floquet states in
composed Hilbert space R3 ⊗ τ [16], with the finite field
method. This approach was developed by Shtoff et al. [26],
where a finite basis set consisting of orthogonal field
free molecule spectral states was used for calculations of
higher-order hyperpolarizabilities.

Our first aim is to investigate the advantages of adding
to such a basis set the polynomial and quasi-spectral wave
functions previously proposed by Rérat et al. [27–29] in
the time-dependent gauge-invariant (TDGI) calculations.
Since additional basis set terms are not orthogonal our
second aim is to extend the theory, developed in [26], to
the case of general non-orthogonal basis. The third pur-
pose of this paper is to calculate the dispersion of the sec-
ond hyperpolarizabilities for a wide range of wavelengths
for different processes, revealing opportunities which are
offered by this approach.

2 Theory

In the semiclassical radiation theory behavior of a many-
electron system subjected to an electromagnetic field in-
duced by light is described by the solution of the time-
dependent Schrödinger equation for the system in external
time-dependent electric field E(t):

i
∂Ψ

∂t
= (H0(r) + V (r, t))Ψ (1)

where the perturbation term V (r, t) in the dipole approx-
imation is given by V (r, t) = E(t) · r. In equation (1) and

throughout, all values are expressed in atomic units. H0(r)
is the Hamiltonian for the unperturbed molecule and is
assumed to have an orthonormal set of eigenfunctions ψi
corresponding to spectral states of the molecule with en-
ergies εi. The vector r is used to represent the coordinates
of all electrons. We are interested in the normalized par-
ticular solution of equation (1) corresponding to the state
of a perturbed molecule which originally (t→ −∞) was in
the lowest energy spectral state. It is well-known [16,19]
that if the field periodic in time has been switched on suf-
ficiently smoothly and the energy of photon (or photons
for the strong field) is far from the transition energies, the
required solution takes the form of a quasiperiodic state,

Ψ(r, t) = exp(−iEt)u(r, t) (2)

where quasienergy E and time periodic steady state func-
tion u(r, t) are solutions of “time-independent” steady
state Schrödinger equation:

H(r, t)u(r, t) = Eu(r, t). (3)

The operator H(r, t) = H0(r) + V (r, t) − i∂/∂t acts in
the composite Hilbert space R3 ⊗ τ including the time
variable, with the inner product:

〈〈u(r, t)|ν(r, t)〉〉 =
1
T

T∫
0

dt
∫

dr u∗(r, t)ν(r, t)

where T is the field period. The states described by the
wave function (2) are referred to as Floquet or quasienergy
states.

We shall assume the external field to be polychromatic
and is consistent of N monochromatic linearly polarized
harmonic components and a static term:

E = E0 + 1/2
N∑
k=1

(Eωk exp(−ωkt) + E−ωk exp(ωkt)) (4)

where Eωk = E0ωk exp(−iηk) is the complex amplitude,
ηk and E0ωk are the time-independent initial phase and
real amplitude of the kth harmonic. Despite of the fact
that the external field is not time-periodic, the solutions
of equation (1) in the form of Floquet states (2) do ex-
ist. To obtain these solutions one can introduce a new
Hamiltonian with the interaction operator, depending on
N time variables

V (r, t1, ..., tN ) = rE0 + 1/2
N∑
k=1

r(Eωk exp(−ωktk)

+ E−ωk exp(ωktk)) (5)

and solve an auxiliary time-dependent equation [22] with
this new Hamiltonian

i
N∑
k=1

∂Φ(r, t1, ..., tN )
∂tk

= H(r, t1, ..., tN )Φ(r, t1, ..., tN ) (6)
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where H(r, t1, ..., tN ) = H0(r) + V (r, t1, ..., tN ).
The Hamiltonian of equation (6) is a time-periodic

function in the N -dimensional space, and according to the
Floquet theorem [30] the solution of equation (6) can be
written as

Φ(r, t1, ..., tN ) = exp

(
−i

N∑
k=1

Ektk

)
v(r, t1, ..., tN ) (7)

where v(r, t1, ..., tN ) meets the periodic conditions

v

(
r, t1, ..., tk +

2π
ωk
, ..., tN

)
= v(r, t1, ..., tk, ..., tN ),

k = 1, ..., N. (8)

Substituting (7) into equation (6) we find that
v(r, t1, ..., tN ) should satisfy the following eigenproblem
equation:

H(r, t1, ..., tN )v(r, t1, ..., tN ) = Ev(r, t1, ..., tN ) (9)

where quasienergy E = E1 + · · ·+ EN .
“Hamiltonian”

H(r, t1, ..., tN ) = H0(r) + V (r, t1, ..., tN )− i
N∑
k=1

∂/∂tk

acts in the extended composed Hilbert space R3 ⊗ τ1 ⊗
· · · ⊗ τN with the inner product

(v, w) =
1

T1 · · ·TN

T1∫
0

dt1 · · ·

×
TN∫
0

dtN 〈v(r, t1, ..., tN )|w(r, t1, ..., tN )〉.

If we have the solution v(r, t1, ..., tN ) of equation (9) which
satisfies periodic conditions (8), then the function

Ψ(r, t) = exp(−iEt)v(r, t, ..., t) = exp(−iEt)u(r, t) (10)

defined by Φ with coinciding time variables t1 = · · · =
tN = t satisfies the Schrödinger equation (1) with
Hamiltonian H = H0 + V (r, t) that can be checked by
direct substitution [22].

To find the approximate solutions of the eigenprob-
lem (9) it is possible to employ the variational principle
for quasienergy. It has been established [16] that the accu-
rate solutions of equation (9) correspond to the stationary
points of the quasienergy functional

E [ṽ(r, t1, ..., tN )] =
(ṽ(r, t1, ..., tN ),Hṽ(r, t1, ..., tN ))
(ṽ(r, t1, ..., tN ), ṽ(r, t1, ..., tN))

· (11)

Using the Lagrange multiplier method one can reformu-
late the variational problem (11) to arrive at the following
equation

δ(ṽ(r, t1, ..., tN ), (H− E)ṽ(r, t1, ..., tN )) = 0 (12)

where the Lagrange multiplier E refers to the quasienergy
and corresponds to normalization requirement

(ṽ, ṽ) = 1. (13)

To solve the variational equation (12) we represent
the trial function in the form of N -dimensional time-
dependent Fourier series

ṽ(r, t1, ..., tN ) =∑
n1,...,nN

fn1,...,nN (r) exp[i(n1ω1t1 + ...+ nNωN tN )]

and expand the Fourier coefficients in terms of M or-
thonormal basis set functions, involving the ground and
the first M−1 lowest-energy excited spectral states ψk(r)
of the field free molecule. To compensate for the limited
size of the basis set thus constructed we added to this ex-
pansion the first degree polynomial terms g(r)ψ0(r) where
ψ0(r) is the field free ground state, g(r) =

∑
α
bαrα (with

α = x, y, z), and the linear combination of M1 quasi-
spectral one-determinantal functions ϕk(r) [28].

To summarize, the trial wave function is expressed as

ṽ(r, t1, ..., tN ) =∑
sn1,...,nN

Csn1,...,nN exp[i(n1ω1t1 + ...+ nNωN tN )]χs(r)

(14)

where

χs(r) = ψk(r), k = 0, ...,M−1, s = 1, ...,M,

χs(r) = rαψ0(r), α = x, y, z, s = M+1,M+2,M+3,

χs(r) = ϕm(r), m = 1, ...,M1 s = M+4, ...,M+3+M1.

Employing the trial function ansatz (14) and equation (12)
we arrive at generalized matrix eigenvalue problem

(H− ES)C = 0 (15)

where (N + 1)-dimensional supermatrices H and S can
be written as:

Hrm1...mNsn1...nN =(
H0rs + E0 · rrs +

N∑
k=1

(nkωk)Srs

)
δm1n1 · · · δmNnN

+ 1/2
N∑
k=1

rrs
(
Eωkδmk,nk−1 + E∗ωkδmk,nk+1

)
× δm1n1 · · · δmk−1nk−1δmk+1nk+1 · · · δmNnN , (16)

Srm1...mNsn1...nN = Srsδm1n1 · · · δmNnN (17)

and symmetric matrices H0, r and S are given by their
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H0 =

k = 0, ...,M − 1 β = x, y, z m2 = 1, ..., M1

i = 0, ..., M − 1 εiδik −〈ψi|∇β |ψ0〉+ ε0〈ψi|rβ |ψ0〉 εi〈ψi|ϕm2 〉
α = x, y, z 1/2nelδαβ + ε0〈ψ0|rαrβ|ψ0〉 〈ψ0|∇α|ϕm2〉+ ε0〈ψ0|rα|ϕm2〉
m1 = 1,M1 〈ϕm1 |H0|ϕm2 〉

r =

k = 0, ...,M − 1 β = x, y, z m2 = 1, ...,M1

i = 0, ...,M − 1 〈ψi|r|ψk〉 〈ψi|rrβ |ψ0〉 〈ψi|r|ϕm2 〉
α = x, y, z 〈ψ0|rαrrβ |ψ0〉 〈ψ0|rαr|ϕm2 〉

m1 = 1, ...,M1 〈ϕm1 |r|ϕm2 〉

S =

k = 0, ...,M − 1 β = x, y, z m2 = 1, ...,M1

i = 0, ...,M − 1 δik 〈ψi|rβ|ψ0〉 〈ψi|ϕm2〉
α = x, y, z 〈ψ0|rαrβ|ψ0〉 〈ψ0|rα|ϕm2〉
m1 = 1,M1 δm1m2

triangles:

see matrices above

where nel is the total number of electrons.
Restricting our consideration to the electron contribu-

tion to the molecular dipole moment

P(t) = −〈Ψ(r, t)|r|Ψ(r, t)〉 (18)

and using the steady state wave function (14) we expand
the right-hand side of (18) in Fourier series

P(t) = −1/2
∑
ωσ

Pωσ exp(−iωσt) (19)

where ωσ = n1ω1+· · ·+nNωN , n1, ..., nN being integers,
and

Pωσ = Pn1···nN = (2− δ0,ωσ)

×
∑

rsm1···mN
C∗r(m1+n1)···(mN+nN )Csm1···mN 〈χr|r|χs〉.

(20)

The hyperpolarizability tensor γ(k)
µβ1...βk

arises when the
Cartesian components of the molecular dipole Fourier am-
plitudes Pωσ are expanded in a power series of the field
strength Cartesian components.

Generally when the applied field consists of several
harmonics of frequencies ωi (including the term with
ωi = 0) this expansion can be written in the following
form [31]:

(Pωσ )µ =
∑
k

(P kωσ )µ (21)

(P kωσ )µ =
∑

β1ω′1...βkω
′
k

(k!)−1N(ω′1, ..., ω
′
k)

× γ(k)
µβ1...βk

(−ωσ;ω′1, ..., ω
′
k)(Eω′1)β1 ...(Eω′k)βk

(22)

where the numerical factor N(ω′1, ..., ω
′
k) depends on the

process being studied.
The frequencies ω′j involved in (22) take on the values

of the applied field frequencies ±ωi, 0, and are subject to
the condition:

ωσ = ω′1 + ...+ ω′k. (23)

As the number of monochromatic waves is usually small,
the power series terms for each order, except the first
one, can include several amplitudes Eωi of the same fre-
quency ωi (including the zero frequency). Later on for the
sake of simplicity we will not use the superscripts for the
frequencies involved in the power series, bearing in mind
that the set of ω1, ..., ωk in the kth order term can include
identical field frequencies (positive, negative, or zero). The
actual values of the field frequencies involved in the power
series terms of particular order are determined by the non-
linear process under consideration.

Comparing the general expression of the Taylor series
coefficients with (22) we immediately obtain:

γ
(k)
µβ1...βk

(−ωσ;ω1, ..., ωk) = (N(ω1, ..., ωk))−1

×
(

∂k(Pωσ )µ
∂(Eω1)β1 ...∂(Eωk)βk

)
Eω1=...=Eωk=0

· (24)

Thus for theoretical prediction of the molecular hyperpo-
larizabilities one can calculate the derivatives of Fourier
components of molecular dipole moment with respect to
the field strengths amplitudes. It is obvious that in any
response theory the differentiation of the dipole moment
with respect to the complex field strengths (Eωk)βk =
(E0ωk)βk exp(−iηk) is supposed to be performed with ini-
tial phase ηk held constant, that is

∂

∂(Eωk)βk
= exp(iηk)

∂

∂(E0ωk)βk
·

It is seen that the derivative of the power series term of any
order does not contain initial phases and differentiation of
the dipole moment with respect to complex field strength
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is reduced to differentiation of the dipole moment with re-
spect to real field strength (E0ωk)βk at zero initial phases.
This means, that if the molecular dipole moment can be
expressed in terms of a power series in the field amplitude
strengths, one can set equal to zero all initial phases of
the perturbation term in the Schrödinger equation while
calculating the hyperpolarizabilities as the dipole moment
derivatives. In this case Hermitian supermatrix H (16) as
well as its eigenvectors will be real.

Turning back to Floquet theory one can see that two
radically different strategies of calculations are possible in
this theory. The first widely accepted approach is based
on the time-independent perturbation theory applied to
Floquet matrix eigenvalue problem (15). As a first ap-
proximation one can solve the eigenproblem for the ma-
trix of a field-free molecule Hamiltonian H0 and find per-
turbed vectors of the first lowest orders by solving the
set of perturbation theory equations. Then differentiating
equation (20) with respect to the field amplitudes, replac-
ing derivatives of eigenvectors by perturbed vectors of cor-
responding orders and using equation (24) one obtains the
required hyperpolarizability.

The second approach [23,32,33] can be called the fi-
nite field method because it is closely analogous to the
finite field method in the theory of static susceptibilities.
The essence of this method is to calculate Floquet matrix
eigenvectors and Fourier components of the dipole mo-
ment (20) as functions of the field amplitudes by solving
equation (15) at different points of the field amplitudes
space. Then the required derivatives of dipole moment
Fourier component are found by some numerical methods.

To extend the capabilities of both methods, an alter-
native two-step strategy combining both approaches has
been proposed [26]. At the first step the unperturbed part
H(0) of the Floquet matrix H is extracted and the eigen-
value problem for this unperturbed matrix is solved. The
choice of H(0) is dependent on the specific features of the
problem. Next the derivatives of dipole moment Fourier
components are calculated as functions of the field am-
plitudes involved in H(0) by solving perturbation theory
equations at the points of this finite field. (If the field is
equal to zero, this step corresponds to the first approach
and the derivatives are directly proportional to the hyper-
polarizabilities of corresponding order.) At the second step
the calculated derivatives are differentiated numerically to
obtain the hyperpolarizabilities of the higher orders.

When the whole matrix H is chosen as the unper-
turbed one, the perturbation can be defined by small vari-
ations δEωk of the field amplitudes.

Let the Floquet matrix (16) be partitioned to unper-
turbed and perturbed parts such that

H=H(0)+H(1). (25)

The perturbed part H(1) can be expressed as

H(1) =
∑
kα

αkH(1)
αk . (26)

where αk denotes the Cartesian component of the kth
monochromatic field amplitude E0ωk , or its small varia-

tion. When k = 0, α0 represents the Cartesian coordinates
of the static field E0, or its small variation.

If k 6= 0, the matrix elements ofH(1)
αk can be written as

H(1)
αkrm1...mNsn1...nN =

1
2

(rα)rs(δmk,nk−1 + δmk,nk+1)δm1n1

· · · δmk−1nk−1δmk+1nk+1 · · · δmNnN , (27)

otherwise

H(1)
α0rm1...mNsn1...nN = (rα)rsδm1n1 · · · δmNnN . (28)

Suppose that the ground energy level is non-degenerate
and the field frequency is far from the transition ener-
gies of the molecule. Then it means that the unperturbed
quasienergy in question is also non-degenerate and one
can use the non-degenerate perturbation theory to solve
equation (15). Expanding C and E according to

C = C(0) +
∑
iα

αiC(1)
αi + 1/2

∑
ijαβ

αiβjC
(2)
αiβj

+ 1/6
∑

ijkαβγ

αiβjγkC
(3)
αiβjγk

+ ... (29)

E = E(0) +
∑
iα

αiE(1)
αi + 1/2

∑
ijαβ

αiβjE(2)
αiβj

+ 1/6
∑

ijkαβγ

αiβjγkE(3)
αiβjγk

+ ..., (30)

substituting these expansions into equation (15) and
equating the coefficients of the same powers of α, β and γ,
we obtain the equations[

H(0) − E(0)S
]
C(0) = 0 (31)[

H(0) − E(0)S
]
C(1)
αi =

[
E(1)
αi S −H

(1)
αi

]
C(0) (32)[

H(0) − E(0)S
]
C(2)
αiβj

= E(2)
αiβj
SC(0)

+
[
E(1)
αi S −H

(1)
αi

]
C(1)
βj

+
[
E(1)
βj
S −H(1)

βj

]
C(1)
αi (33)

etc. The normalization requirement (13) yields another set
of equations:

C(0)+SC(0) = 1, (34)

C(0)+SC(1)
α = 0, (35)

C(0)+SC(2)
αiβj

+ C(1)+
αi SC

(1)
βj

= 0. (36)

Multiplying equations (31–33) from the left by C(0)+ and
using normalization conditions (Eqs. (34–36)) it is easy to
obtain the following expressions for perturbed eigenvalues
and eigenvectors:

E(1)
αi = C(0)+H(1)

αi C(0) (37)

E(2)
αiβj

= C(0)+H(1)
αi C(1)

βj
+ C(0)+H(1)

βj
C(1)
αi (38)
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etc.

C(1)
αi =

[
H(0) − SE(0)

]−1

(P − 1)
(
H(1)
αi − SE(1)

αi

)
C(0)

(39)

C(2)
αiβj

=
[
H(0) − SE(0)

]−1

(P − 1)
[(
H(1)
αi − SE

(1)
αi

)
C(1)
βj

+
(
H(1)
βj
− SE(1)

βj

)
C(1)
αi

]
−
(
C(1)+
αi SC(1)

βj

)
C(0)

(40)

etc. where the generalized projection operator P acts on
the arbitrary vector C according to the following rule:
PC = SC(0)(C(0)+C).

Differentiating equation (20) with respect to the field
amplitudes, replacing the derivatives of the CI coefficients
by perturbed coefficients of corresponding order, we ob-
tain the derivatives of dipole moment Fourier components
in terms of perturbed eigenvectors and eigenvalues of the
Floquet matrix. These expressions depend on the form of
the Floquet matrix separation into unperturbed and per-
turbed parts, that is on the problem being solved.

As an example we consider the harmonic field, which
can include the static component. For this field Floquet
matrix is given by the following expression:

Hrmsn = (H0rs + E0rrs + nωSrs) δmn

+
1
2
E0ωrrs (δm,n−1 + δm,n+1) . (41)

Introducing the small variations α0 = δ(E0)α and α1 =
δ(E0ω)α of the field amplitudes E0, E0ω, we can treat the
matrix (41) as unperturbed one and define the perturba-
tion term as

H(1) =
∑
α

(
α0H(1)

α0
+ α1H(1)

α1

)
(42)

where

H(1)
α0rmsn = (rα)rsδm,n

H(1)
α1rmsn =

1
2

(rα)rs(δm,n−1 + δm,n+1). (43)

In this case the following expressions of the first and sec-
ond field-dependent derivatives of the dipole moment com-
ponents are easily obtained:

∂(Pωσ )µ
∂(E0ωi)α

= 4C(0)+H(1)
µ (nω)C(1)

αi (44)

∂(2)(Pωσ )µ
∂(E0ωi)α∂(E0ωj )β

= 4P2

[
C(1)+
µ (nω)

(
H(1)
αi

−E(1)
αi S

)
C(1)
βj

+ C(1)+
αi

(
H(1)
µ (nω)

−E(1)
µ (nω)S

)
C(1)
βj

]
(45)

where ωσ = nω and n can take on values 0, 1, 2, 3 de-
pending on the process being studied. The indices i, j are
equal to 0, 1 for the static and harmonic field components

correspondingly. The matrix H(1)
µ (qω) in the right-hand

side of equation (45) can be written as H(1)
µrmsn(qω) =

1
2 (rµ)rs(δm,n−q + δm,n+q), and all other values depending
on qω are the solutions of the perturbation theory equa-
tions, corresponding to the perturbation H(1)

µ (qω). The
permutation operator P2 yields all the actually different
terms with transposed indices αi, βj involved in the right-
hand side of the equation.

The other example is evaluation of the second deriva-
tive of the dipole moment with respect to the field ampli-
tudes for a system in the two-mode radiation field. In this
case Floquet matrix takes the form:

Hrm1m2sn1n2 =(H0rs + (n1ω1 + n2ω2)Srs)δm1n1δm2n2

+
1
2
E0ω1rrs(δm1,n1−1 + δm1,n1+1)δm2n2

+
1
2
E0ω2rrsδm1n1(δm2,n2−1 + δm2,n2+1)

(46)

where H0rsδm1n1δm2n2 is the part of the matrix, corre-
sponding to the field-free molecule. It is appropriate here
to divide Floquet matrix into an unperturbed part and a
perturbation, according to the following scheme:

H(0)
rm1m2sn1n2

=
[

(H0rs + (n1ω1 + n2ω2)Srs) δm1n1

+
1
2
E0ω1rrs(δm1,n1−1 + δm1,n1+1)

]
δm2n2 ,

(47)

H(1)
rm1m2sn1n2

=
1
2
E0ω2rrsδm1n1(δm2,n2−1 + δm2,n2+1).

(48)

In accordance with this separation, the zero-order eigen-
values E(0)

J and eigenvectors CJ(0) of two-mode Floquet
matrix can be represented through the quasienergies εj
and eigenvectors Cj of one-frequency Floquet matrix for
the first mode, which are supposed to be known:

E(0)
J = εj + n2jω2,

CJ(0)
rm1m2

= C(j,n2j)
rm1m2

= Cjrm1
δm2,n2j . (49)

Here n2j is the integer, which is treated as the photon
quantum number for the second frequency, determining
the corresponding “Brillouin zone”. This quantity can be
chosen equal to zero, that is

E(0)
J = εj ,

CJ(0)
rm1m2

= Cjrm1
δm2,0, (50)

The time-independent perturbation theory yields the first-
order correction to the eigenvector, caused by Cartesian
component of the second frequency field E0ω2α, in the
form:

C(1)
α2rm1m2

= C(+1)
α2rm1

δm2,1 + C(−1)
α2rm1

δm2,−1. (51)
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∂2(Pn1ω1+n2ω2)µ
∂(E0ω2)β∂(E0ω2)γ

= 2

�
δn2,−2

h
C(+1)+
µ (n1ω1,−2ω2)

�
h

(1)
β2

C(+1)
γ2 + h(1)

γ2 C
(+1)
β2

�

+C(−1)+
µ (n1ω1, 2ω2)

�
h

(1)
β2

C(−1)
γ2 + h(1)

γ2 C
(−1)
β2

�
+ C

(−1)+
β2

h(+1)
µ (n1ω1)C(+1)

γ2 + C
(+1)+
β2

h(−1)
µ (n1ω1)C(−1)

γ2

i

+ 2δn2,0

h
C(1)+
µ (n1ω1)

�
h

(1)
β2

�
C(+1)
γ2 + C(−1)

γ2

�
+ h(1)

γ2

�
C

(+1)
β2

+ C
(−1)
β2

��
+ C

(+1)+
β2

h(1)
µ (n1ω1)C(+1)

γ2

+C
(−1)+
β2

h(1)
µ (n1ω1)C(−1)

γ2 −
�
C

(+1)+
β2

SC(+1)
γ2 + C

(−1)+
β2

SC(−1)
γ2

�
Cj+h(1)

µ (n1ω1)Cj
i

+ δn2,2

h
C(+1)+
µ (n1ω1, 2ω2)

�
h

(1)
β2

C(−1)
γ2 + h(1)

γ2 C
(−1)
β2

�
+ C(−1)+

µ (n1ω1,−2ω2)
�
h

(1)
β2

C(+1)
γ2 + h(1)

γ2 C
(+1)
β2

�

+C
(−1)+
β2

h(−1)
µ (n1ω1)C(+1)

γ2 + C
(+1)+
β2

h(+1)
µ (n1ω1)C(−1)

γ2

i�
· (56)

The vectors C(±1)
α2 in equation (51) are solutions of the first

order nonhomogeneous equations of perturbation theory
for one-frequency field:(
H(one) − (εj ± ω2)S(one)

)
C(±1)
α2

= −h(1)
α2

Cj , (52)

where

h(1)
αrmsn =

1
2

(rα)rsδmn.

We can also introduce the auxiliary vectors C(1)
µ (n1ω1)

and C(±1)
µ (n1ω1,∓2ω2) which satisfy the auxiliary one-

frequency first order perturbation theory equations:(
H(one) − εjS(one)

)
C(1)
µ = −h(1)

µ (n1ω1)Cj (53)(
H(one) − (εj±2ω2)S(one)

)
C(±1)
µ (n1ω1,∓2ω2) =

− h(±1)
µ (n1ω1)Cj , (54)

where H(one) and S(one) are the one-frequency Floquet
and overlap matrices for the first mode,

h(1)
µrmsn(n1ω1) =

1
2
rµrs(δm,n−n1 + δm,n+n1),

h(±1)
µrmsn(n1ω1) =

1
2
rµrsδm,n±n1 .

The third order term in the power series of the dipole
moment, is given by(
P (3)
ωσ

)
µ

=
∑
αβγ

(3!)−1N (ω1
′, ω2

′, ω3
′)

× γ(3)
µα1β2γ2

(−ωσ;ω1
′, ω2

′, ω3
′)Eω1′αEω2′βEω3′γ (55)

where ωσ = n1ω1 + n2ω2, ni = 0,±1,±2,±3.
Let us consider the most interesting alternatives n1 =

±1, n2 = 0, ±2 embracing the a.c. Kerr effect, coherent
anti-Stokes Raman scattering, simulated Raman scatter-
ing, two-photon absorption and a number of connected
processes [31]. In the case being considered the second hy-
perpolarizability is defined by the third derivative

∂3(Pωσ )µ
∂(E0ω1)α∂(E0ω2)β∂(E0ω2)γ

·

In our approach we propose to calculate the second deriva-
tive

∂2(Pωσ )µ
∂(E0ω2)β∂(E0ω2)γ

at different points of the field E0ω1 and then to obtain
the third derivative by means of numerical differentiation
with respect to the amplitudes of the second mode. Using
the perturbation theory equations we express the second
derivative in a form, involving only the first order eigen-
vector corrections assigned to the solution of the first one-
frequency field problem:

see equation (56) above.

It is seen that combining the finite field method with per-
turbation theory makes it possible to calculate the second
hyperpolarizability in the two-frequency field as well as
in the monochromatic field by a relatively simple method.
One needs only to solve the first order perturbation theory
equations for one-frequency mode and then use numerical
procedures.

The higher order hyperpolarizabilities also can be cal-
culated combining numerical methods with perturbation
theory. The minimal order of the perturbation theory
equations to be solved is determined by the features of
the considered process as well as by the accuracy and ef-
ficiency of the selected method of calculation.

3 Computational details and discussion
of results

The first step of the calculation is to construct the wave
functions of the molecule in the ground and the first singlet
excited states of Σ+ and Π symmetries, necessary for cal-
culation of the ground state electric susceptibilities. The
atomic orbitals basis set used for Li consisted of (10s6p4d)
Gaussian type functions developed by Sadlej et al. [34,35]
for obtaining accurate values for the electric property. In
addition a (10s6p) basis set as described in [36] has been
used for H. Diffuse Gaussian functions of s-, p- and d-type
with corresponding exponents 0.003, 0.002 and 0.002 have
been added on Li atom as well as functions s(0.003) and
p(0.01) on H. The calculations have been carried out for
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Table 1. Transition energies (a.u.) and oscillator strengths.

Transitions ∆E fr f∇

X1Σ+ → A1Σ+ 0.1337 0.2359 0.2316
0.1354a 0.2381a

X1Σ+ → 21Σ+ 0.2186 0.0672 0.0660
X1Σ+ → 31Σ+ 0.2320 0.0077 0.0073
X1Σ+ → 41Σ+ 0.2394 0.1226 0.1187
X1Σ+ → 51Σ+ 0.2564 0.0173 0.0168

X1Σ+ → B1Π 0.1707 0.6159 0.5975
0.1718a 0.5912a

X1Σ+ → 21Π 0.2385 0.0039 0.0040
X1Σ+ → 31Π 0.2410 0.1199 0.1177
X1Σ+ → 41Π 0.2635 0.0011 0.0010
X1Σ+ → 51Π 0.2656 0.0467 0.0452

a: references [39,40].

the ab initio configuration interaction (CI) level using the
experimental internuclear distance 3.015 a.u. Correlation
effects have been taken into account by means of the mul-
tireference, second-order, many-body perturbation theory
through the CIPSI algorithm [37,38] (configuration inter-
action with perturbation selected interactions).

First the wave functions are spanned over a subspace
including the most significant determinants (about 400)
and built up iteratively from the total set of canonical
orbitals in order to obtain their lowest energy. Then the
most important second-order perturbational Slater deter-
minants (' 50 000) of the multireference are also added
within the energetic criterion. The low-lying spectroscopic
states (M = 15) are finally obtained by diagonalization
of the zero order perturbation H(0) matrix. To check the
accuracy of these spectroscopic states we have used the
velocity and length operators in the calculation of
the transition moments between these states and verify
the hypervirial theorem through employing the transition
energies obtained. The first 5 transition energies and cor-
responding oscillator strengths are displaced in Table 1
and are compared to the theoretical values obtained by
Partridge and Langhoff [39,40]. This comparison shows a
perfect agreement between our calculated transition ener-
gies and oscillator strengths for the first X1Σ+ → A1Σ+

and X1Σ+ → B1Π transitions with the corresponding
values of Partridge and Langhoff. The relative difference
between the oscillator strengths in fr and f∇ representa-
tions does not exceed 9% which points to sufficiently high
accuracy for the spectral states calculations.

The quasi-spectral series (Ml ≤ 100), corresponds to
Slater determinants, belonging or not to excited spectro-
scopic states, which perturb significantly the ground state
through the first order perturbation Hamiltonian equal to
r or ∇ according to the gauge chosen.

Table 2 gives the total energy, dipole moment and
Cartesian components of the static polarizability, the first
and the second hyperpolarizabilities of LiH in the ground
state. The static susceptibilities have been obtained by our
method through the elimination of non-diagonal blocks

from the Floquet matrix and equating the frequency in di-
agonal blocks to zero. These values are compared with the
previously published ab initio calculations, accomplished
by using various GTO basis sets, and considering the elec-
tron correlation at different levels. It is seen that our cal-
culated polarizabilities are in a good agreement with other
theoretical results. It should be noted that theoretical val-
ues of hyperpolarizabilities depend largely on the method
of calculations used. Comparing our values of the first hy-
perpolarizability tensor components with those of Tunega
and Noga [44], which are apparently the most accurate, we
can note fair agreement of longitudinal βzzz components
but worse correlation of transverse ones. At the same time
one should recognize the poor correlation of βxxz values,
obtained by other methods, in which case the disagree-
ment between the values obtained by coupled cluster cal-
culations carried out at different levels [43,44] is especially
typical.

Our second hyperpolarizabilities are compared with
full CI (FCI) [2] and CASSCF [2,42] results obtained with
the Sadlej’s GTO basis set [34], similar to the set used
in our calculations, as well as with the data of the cou-
pled cluster calculations [44]. As the referenced CASSCF
wave function was spanned over the large CAS4 active
space (16, 7, 7, 2), the FCI and CASSCF results are quite
similar. We note the excellent agreement between our val-
ues and the data for both the FCI and CASSCF calcu-
lations. However our results correlate less well with the
result of Tunega and Noga which were calculated using
the CCSD(T) method using an extremely large Gaussian
basis set [44]. Agreement can be improved by taking into
account the second order polynomial terms and increasing
the number of the spectral and pseudo-spectral terms in
the wave function expansion as well as by enlarging the
Gaussian basis set.

Coming to the frequency dependent properties, we first
investigated the convergence of our method with respect
to the number of photon states, corresponding to Fourier
harmonics, included in the wave function expansion. As
can be seen in Table 3 and should be obvious from per-
turbation theory the convergence depends on the order of
hyperpolarizability linearly. Therefore the size of Floquet
matrix is enlarged moderately as the order of hyperpolar-
izability is increased.

Figure 1 illustrates the influence of the first order poly-
nomial and pseudo-spectral terms. This influence is most
significant for polarizabilities, where improvement of static
and dynamic components is as much as 30%. At the same
time one can observe, that the relative influence for higher-
order susceptibilities becomes less efficient. The improve-
ment amounts to about 8% for the first hyperpolarizabil-
ity and up to 4.5% for the second one. This simply implies
that inclusion of the polynomials of the second and higher
degrees and increasing the number of quasi-spectral terms
becomes more important for the prediction of higher-order
nonlinear properties.

There is no reliable experimental data concerning dis-
persion of the studied properties for the different pro-
cesses. Hence comparison with most accurate numerical
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Table 2. Ground state properties of LiH a.u. for the experimental bond length 3.015a0 .

Property This MCSCFa CASSCF Full CIb MP2d CCD/BOd CCSD(T) CCSD(T)
work CAS 4b spdfe R12 spdfe

Energy –8.06011 –8.02036 – – –8.06952 –8.07047
µ 2.304 2.311 – – 2.332 2.300 2.294 2.294
αzz 25.4 26.4 26.84 26.89 23.90 25.73 25.88 25.79
αxx 29.5 29.8 – – 27.06 29.52 29.63 29.57
βzzz 676 686 721 729 742 635 639 630
βxxz 356 364 – – 364 593 237 234
γzzzz × 103 126.7 – 124.3c 127.1 – – 113.3 111.5
γxxzz × 103 38.3 – 34.4c – – – 49.9 49.3
γxxxx × 103 62.4 – 64.4c – – – 93.1 92.0

a: reference [41], b: reference [2], c: (16, 7, 7, 2) active space CASSCF with Sadlej’s basis reference [34] values, obtained in this
work using DALTON program reference [42], d: reference [43], e: reference [44].

Table 3. Convergence of method with respect to the photon
states number n at ω = 0.01 a.u.

n 1 2 3 4

αzz(−ω;ω) 26.269 26.269 26.269 26.269

βzzz(−2ω;ω,ω) 290.62 779.65 779.65 779.65

γzzzz(−3ω;ω, ω,ω) –137.3 43.81 139.4 139.4

data has to be carried out. Figure 2 compares the third
harmonic generation curves for all Cartesian compo-
nents with corresponding values calculated by the FCI
method [2]. All longitudinal and mixed components are in
excellent agreement with the FCI values. This indicates
the remarkable potential of the TDGI method combined
with Floquet theory for the study of nonlinear properties
of molecules. The weaker correlation of transverse com-
ponent γxxxx can be improved similar to the static case,
by using a more accurate description of the wave function
expansion.

4 Conclusions

In this work we develop a new approach to theoretical
investigation of nonlinear molecular dynamic properties
based on a combination of the perturbation theory ap-
proximation with the finite field method in Floquet the-
ory. The compact expressions of dipole Fourier compo-
nent derivatives are given for different nonlinear dynamic
properties of molecules including the formula applicable
for superposition of two monochromatic fields with in-
commensurable frequencies. This approach appears to be
quite efficient when it is used in conjunction with CIPSI
algorithm which was designed to obtain accurate values
of transition moments and energies. The accuracy of the
presented method is related to the ability to use flexi-
ble expansion of the wave function involving polynomial
terms and pseudo-spectral states. The algorithm submit-
ted in the paper is found to be relatively cheap. This is

Fig. 1. Individual components of dynamic polarizabilities, first
and second hyperpolarizabilities, calculated with basis sets of
different levels; dotted line: only spectral states; solid line: spec-
tral + pseudospectral states + polynomial terms.
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Fig. 2. THG dispersion of LiH; short dashed line: γzzzz,
dotted line: γzzxx, long dashed line: γxxzz, solid line: γxxxx,
(�) γzzzz [2], (×) γzzxx [2], (�) γxxzz [2], (4) γxxxx [2].

because the most time consuming part of the simultane-
ous calculations of the dispersion curves of several second
order nonlinear properties, namely, multireference CI cal-
culation of a field free molecule, is carried out only once.
Therefore in some cases our method may be a good al-
ternative to other sophisticated but more expansive al-
gorithms. There is reason to hope that with the use of
the larger quasi-spectral basis sets and by taking into ac-
count the higher order polynomials, the method can be
applied without any additional modifications to calcula-
tions of second order and higher order dynamic response
properties and opens the way to the investigation as yet
unexplored nonlinear optical processes.

The authors wish to thank professor Yu.Yu. Dmitriev for his
helpful discussions.
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